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Transitioning from fossil fuels to a net-zero economy is a major policy challenge at 

the core of the green transition. At the same time, advances in digital technologies 

such as artificial intelligence (AI) are rapidly changing production processes for 

goods and services across different sectors in the economy. This paper provides a 

conceptual framework to better understand how this digital transformation could 

influence the net-zero transition. By considering the digital transformation as linked 

to the emergence and diffusion of a general-purpose technology, it identifies the 

various channels through which this technological shift could affect the key 

elements of the net-zero transition, including energy efficiency and the carbon 

intensity of energy consumption. 
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Executive summary 

This paper explores how the digital transformation – driven by the widespread adoption of digital 

technologies across the economy – may affect the pace of the transition to a net-zero greenhouse gases 

(GHG) emissions economy. While the green transition encompasses the broader environmental impact 

and therefore also other dimensions that may be affected by the digital transformation, this paper focuses 

on the net-zero aspect of the green transition by examining the impacts of the digital transformation on 

energy efficiency and the carbon intensity of energy consumption across the economy. 

The net-zero transition aims to eliminate greenhouse gas emissions through the development and 

deployment of energy efficiency and carbon-free technologies, while the digital transformation, driven by 

advances in artificial intelligence (AI),  other advanced digital technologies and the underlying connectivity, 

is rapidly changing production processes across sectors. These two transformations have been coined the 

“twin transition” because they happen in parallel, but also due to their potential interlinkages. However, 

whether and how the digital revolution can be leveraged to reach net-zero goals is not straightforward. 

The two processes interact in multiple ways. On the one hand, digital technologies can lead to energy 

efficiency improvements and to accelerated deployment of carbon-free technologies, thanks to potential 

benefits from advanced digital solutions like smart metres, sensors, AI, the Internet of Things and 

blockchain. On the other hand, as computational needs grow and potential rebound effects come into play, 

the digitalisation of economic processes could also increase energy use, potentially leading to a larger 

GHG footprint, at least until all sources of energy have been decarbonised. Given the rapid rate at which 

the digital transformation is unfolding, understanding its consequences for the net-zero transition is crucial 

to design climate policies that best account for the digitalisation of the economy, and digital policies that 

accelerate rather than hinder the clean energy transition. 

The paper presents a conceptual framework to analyse the economic mechanisms behind these green-

digital transition linkages. The framework can help lay out an agenda for policy-relevant research aiming 

to quantify the importance of the different channels highlighted by the conceptual framework. As a crucial 

driver of the digital transformation, the arrival of new digital technologies can be thought of as linked to the 

emergence and diffusion of a new general-purpose technology (GPT), affecting different sectors of the 

economy, boosting innovation, and increasing productivity for different inputs in production. The framework 

focuses on how digitalisation impacts the net-zero transition by inducing changes in both the quantity and 

type of energy consumed in the economy. As the GPT impacts the productivity of each of the constituent 

parts of production, it affects their relative use as well as overall output. 

The paper identifies five channels through which the digital transformation could affect the net-zero 

transition, through the diffusion of the digital GPT and its implications: 

• Energy use of capital: the use of both digital and non-digital machines can become more energy-

using. As ICT hardware becomes more important in the capital stock, the overall use of machines 

can become more energy-intensive due to higher computing demand, or less energy-intensive due 

to digitally optimised energy efficiency. 
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• Capital intensity: if digitalisation relatively increases the output productivity of machines (both digital 

and non-digital) more than that of workers, then more machines will be used, implying greater 

overall energy use as machines require energy to function. For example, if machines are better 

able to fulfil tasks, more machines and hardware will be used and relatively fewer workers will be 

hired. This would increase capital intensity and therefore energy consumption. 

• Type of energy use: if digitalisation favours productivity of machines using clean energy (electricity, 

which can be generated carbon-free) compared to machines using dirty energy (fossil fuels), 

energy use will be less polluting. For example, optimisation driven by machine learning (ML) may 

benefit battery life and therefore the usage of electric vehicles more than when applied to internal 

combustion engine vehicles. 

• Direction of innovation: digitalisation could favour R&D in either clean or dirty technologies. For 

example, this could be due to differences in the capacity of clean and dirty technologies to absorb 

digital advancements, which may reflect differences in the scientific fields they rely on and on their 

intrinsic proximity to advanced digital technologies. 

• Scale: digitalisation may increase overall output growth, leading to higher energy demand, and 

therefore emissions until the economy is fully decarbonised. 

The overall impact of the digital transformation on the net-zero transition remains an empirical question as 

the direction of the effect for each channel (except scale) is theoretically undetermined. A casual look at 

aggregate trends points to opposing directions across channels.  

This framework highlights the policy relevance of focusing on different aspects of the link between the 

digital transformation and the net-zero transition, which can be affected by complementary policy levers. 

The various channels also show that digital and climate policies interact with each other, implying that they 

should each be designed taking the other into account.  
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Countries representing more than 90% of world GDP have announced targets of climate neutrality by mid-

century. Reaching this objective and achieving this key dimension of the “green transition” – the shift away 

from a form of economic growth driven by fossil fuel consumption and natural resources exhaustion – is a 

major challenge as it requires rapidly adopting zero-carbon energy sources and production processes 

across all economic sectors. Some of the low-carbon technologies necessary to reach net-zero emissions 

already exist, but many others are still being developed. At the same time, advances in digital technologies 

such as artificial intelligence (AI)1 and their underlying infrastructure are rapidly changing production 

processes for goods and services across different sectors in the economy. This “digital transformation” is 

rapidly changing the economy in ways just as profound as the green transition.2 These two transformations 

have been coined the “twin transition” because they happen in parallel but also due to their potential 

interlinkages. However, whether and how the digital revolution can be leveraged to reach net-zero goals 

is not straightforward. While the green transition encompasses multiple dimensions that may all be 

impacted by the digital transformation, such as material requirements as well as waste and pollutants 

beyond greenhouse gases, this paper focuses on the net-zero aspect of the green transition by examining 

the impact of the digital transformation on energy efficiency and the carbon intensity of energy 

consumption.  

There are some obvious ways in which the two transitions may interact: on the one hand, digital 

technologies could be a key enabler for reaching net-zero objectives. A sizeable literature has emphasised 

the potential sustainability benefits of many advanced digital solutions, such as the Internet of things (e.g. 

smart metres and sensors) and AI (Global e-Sustainability Initiative, 2016[1]; Vidmar, Marolt and Pucihar, 

2021[2]; Bican and Brem, 2020[3]; Iddri et al., 2018[4]; OECD, 2024[5]; OECD, 2025[6]). On the other hand, 

the digitalisation of economic processes is associated with considerable energy use, with AI on track to 

reach the energy needs equivalent to those of entire countries (De Vries, 2023[7]). With fossil energies still 

in use, the recent emergence of AI may therefore impose an increasingly large carbon footprint. 

Additionally, advanced digital technologies such as AI could encourage the use of (energy-using) machines 

as they make not only workers, but also machines more productive and thus lead to increased use of 

capital (OECD, 2024[5]; OECD, 2022[8]). 

These opposing mechanisms are reflected in Figure 1.1: in recent years, highly digital sectors,3 so those 

at the forefront of the digital transformation, have seen a reduction in their global carbon footprint, while 

less digital intensive sectors have continued to grow their emissions. At the same time, the Information 

and Communication Technologies (ICT) services sector has not reduced its emissions because of 

increasing energy consumption (World Bank and ITU, 2024[9]). Considering the various competing 

mechanisms, the way in which the digital transformation, including its most recent stages, interacts with 

the net-zero transition is therefore multi-faceted. 

1 Introduction 
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Figure 1.1. Emissions have been decreasing in highly digital sectors, but not in the ICT sector 

Total CO2 emissions by sector category 

 

Note: Global CO2 emissions. Index year 2006. ICT sectors only include ICT service industries (i.e. ISIC codes 61, 62 and 63), namely: 

Telecommunications; Computer programming, consultancy and related activities; Data processing, hosting and related activities; web portals. 

Source: IEA Energy End-uses and Efficiency Indicators database. 

This paper provides a conceptual framework to analyse the economic mechanisms behind these digital-

green transition linkages and discusses the role of different channels and their implications for the net-zero 

transition. It focuses on how the diffusion of digital technologies might affect the quantity and type of energy 

consumption, which are key elements relevant for the net-zero transition. In this context, we consider the 

development and widespread adoption of the various digital technologies underlying the digital 

transformation as the emergence and diffusion of a new general-purpose technology (GPT), which affects 

different sectors of the economy, boosts innovation, and increases productivity for different inputs in 

production. This is consistent not only with the literature considering ICTs as a GPT, but also with recent 

evidence highlighting the increasing potential of AI and its applications across the economy (Basu and 

Fernald, 2007[10]; Fulgenzi, Gitto and Mancuso, 2024[11]; Agrawal, Gans and Goldfarb, 2019[12]; 

Brynjolfsson and Mcafee, 2017[13]; Goldfarb, Taska and Teodoridis, 2023[14]). 

The proposed framework can help policy makers focus on different aspects of the multifaceted link between 

the digital transformation and the net-zero transition, each of which can be affected by different policy 

levers. As the digital transition influences the net-zero transition through various mechanisms, both policies 

aimed at guiding the digital transformation and instruments designed for climate action will interact with 

each other in a parallel fashion through these channels. Additionally, each of the channels can be object 

of further measurement and analysis, e.g. with microdata, supporting evidence-based policymaking. In this 

context, administrative microdata could allow exploring further the links between digital technology 

adoption and environmental investments, patent data could be used to further analyse innovation patterns, 

or granular information could enable studying recent patterns in the energy efficiency of supercomputers. 

This would be complementary to recent and ongoing OECD work on the links between digital technologies 
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and economic outcomes, environmental efficiency and firm performance, and the falling labour share 

based on micro-aggregated data. 



12  HOW CAN THE DIGITAL TRANSFORMATION AFFECT THE NET-ZERO TRANSITION 

 

 OECD SCIENCE TECHNOLOGY AND INDUSTRY WORKING PAPERS © OECD 2025 

 

As a crucial driver of the digital transformation, the adoption and diffusion of different digital technologies, 

including the recent emergence of AI, can be understood as transforming the economy through the 

emergence of a new general-purpose technology (GPT), defined in Box 2.1.4 Compared to other types of 

technologies, GPTs are characterised by their general nature as an enabling technology for a wide range 

of potential applications, as well as by their aggregate economic impact (Jovanovic and Rousseau, 

2005[15]). As such, in order for a technology to qualify as a GPT, the literature identifies as its main features 

a pervasiveness across sectors, an improvement over time as well as a potential to enhance innovation 

(Bresnahan and Trajtenberg, 1995[16]). These characteristics have been evidenced for historical cases of 

GPTs such as the advent of the steam engine or electricity. At the same time, the literature has established 

the more recent wave of digital technologies centred around information technology (IT) as a GPT 

(Jovanovic and Rousseau, 2005[15]; Basu and Fernald, 2007[10]). In the context of recent advancements in 

digital technologies, ongoing research further points to the potential of AI and the extent to which it may 

qualify as a new GPT, too (Cockburn, Henderson and Stern, 2019[17]; Crafts, 2021[18]; Bresnahan, 2024[19]; 

Goldfarb, Taska and Teodoridis, 2023[14]). 

In the following framework, this crucial aspect of the digital transformation is conceptualised as the 

emergence of a new GPT, which impacts the net-zero transition by focusing on the potential changes it 

can induce in both the quantity and type of energy consumed in the economy.5 Considering the general 

nature of the GPT, its simultaneous adoption in various ways across sectors and inputs in production 

implies multiple channels for this impact, which are brought together in an analytical framework. A formal 

exposition is available in Annex A. Infographic 2.1 shows a visual representation of this framework.  

The proposed framework focuses on how production inputs interact with the energy needs of production. 

As is common in economic models, the primary inputs are given by labour on the one hand, representing 

human workers,6 and capital on the other hand, which consists of various types of machines powered by 

energy. Capital (machines including digital tools but not only) is therefore complementary with energy. 

Labour and capital are both necessary for production but can to some extent be substituted for one another. 

An important aspect for the net-zero transition is that not all machines are equal: some make use of “dirty” 

sources of energy (e.g. fossil fuel or high-carbon electricity), which are polluting, whereas others are 

powered by “cleaner”, less-polluting energy sources (e.g. low-carbon electricity). The two types divide 

machine use into two sectors, as each requires their own specific set of technologies. The state of 

technology in each sector changes with innovation: firms invest in R&D by employing scientists to increase 

the productivity of the machines. Ultimately, the size of the inputs in production and innovation depends 

on the extent to which they can be brought to productive use. Given its general nature, the GPT impacts 

the productivity of each of the constituent parts of production, thereby affecting their relative use as well 

as overall output.  

 

2 Conceptual framework 
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Box 2.1. General-purpose technologies 

The concept of general-purpose technologies (GPTs) seeks to conceptualise the transformative 

impacts of certain technological developments on both the economy and, in a wider sense, society. 

Impacting aggregate productivity and growth, this sets them apart from marginal and/or application-

specific technological innovations. The economic literature broadly identifies three features that 

characterise GPTs (Bresnahan and Trajtenberg, 1995[16]; Jovanovic and Rousseau, 2005[15]; Lipsey, 

Carlaw and Bekar, 2005[20]): 

• Pervasiveness: There is widespread diffusion of the technology across sectors. 

• Continuous improvement: Over time, the technology becomes increasingly useful. 

• Innovation spawning: The technology aids innovation in products and processes. 

Past technologies that have been characterised as GPTs include the steam engine, electricity, and ICT. 

A common observation across existing GPTs is that economy-wide productivity effects often take time 

to materialise (David, 1991[21]; Brynjolfsson, 1993[22]), a phenomenon which is often credited to the need 

for accumulating complementary assets (Brynjolfsson, Rock and Syverson, 2021[23]). The question of 

what exactly defines the GPT as compared to complementary technologies and assets is not always 

straightforward. In the most recent case of ICT, for example, potential technological drivers that have 

been identified include semiconductors (Bresnahan and Trajtenberg, 1995[16]), microprocessors 

(Bresnahan and Greenstein, 1999[24]), wider ICT capital (Basu and Fernald, 2007[10]) and the internet 

(Field, 2008[25]). 

Infographic 2.1. Economic relationships affected by the digital transformation 

Rectangular boxes represent the physical inputs into the economy, while the oval shapes represent R&D processes. 

The arrival of the new GPT affects the various relationships indicated by the arrows (composition effects). A formal 

exposition of the model is presented in Annex A. 

 

 

The new GPT impacts the net-zero transition through the following channels, holding other things constant, 

which are numbered following the diagram: 

1) Energy use of capital: with the new GPT, the use of machines can become more or less energy-

intensive. For example, as ICT hardware becomes more important in the capital stock, the overall 

use of machines can become more energy-intensive due to higher computing demand or less 

energy-intensive due to digitally optimised energy efficiency. 
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2) Capital intensity: the GPT favours productivity in both machines (capital) and workers (labour). If 

the productivity of machines increases relatively more than that of workers, as a result, relatively 

more machines will be used, implying greater energy used (of which some is polluting). For 

example, if machines are better able to fulfil tasks, more machines and hardware will be bought 

and relatively fewer workers will be hired. This would increase capital intensity and therefore energy 

consumption.  

3) Type of energy use: if the GPT favours productivity in the clean sector (using electricity, which 

can be generated carbon-free) more than it does in the dirty sector (using fossil fuels), energy use 

will be less polluting. For example, optimisation driven by machine learning (ML) may benefit 

battery life and therefore the usage of electric vehicles more than when applied to internal 

combustion engine vehicles. Similarly, AI could help forecast electricity demand, thus mitigating 

intermittency problems and favouring renewable electricity more than fossil-based electricity. 

Simultaneously, increasing electricity demand from data centres could also exacerbate 

intermittency issues, which would favour dirty energy – the more flexible source of energy used for 

peak demand. 

4) Direction of innovation: the GPT could make it easier for researchers to create new innovations. 

Due to differences in the capacity of clean and dirty technologies to absorb the GPT, which may 

reflect differences in the scientific fields they rely on and on their intrinsic proximity to the GPT, this 

may favour R&D either in the clean or in the dirty sector. For example, AI and ML have already 

helped researchers discover new perovskite materials whose properties make them good 

candidates for high-efficiency solar cells (Wang et al., 2024[26]).7 

5) Scale: the new GPT may drive overall output growth, leading to higher energy demand. As such, 

total energy use may increase as a result of the various efficiency increases implied by the GPT. 

Infographic 2.2 summarises how the various channels affect emissions through the channels during the 

net-zero transition. Note that heterogeneity across industries can influence how the various effects 

described play out in practice, particularly in terms of their magnitude. Each channel is now reviewed in 

turn. 
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Infographic 2.2. Potential effects of the digital transition on the net-zero transition 

 

 

Energy use of capital 

Perhaps the most apparent way in which advanced digital technologies affect energy usage is the 

technology’s very own energy needs. Recently, this has become especially prominent, in the context of 

the debate surrounding the computational needs of AI. While machines have always required the input of 

energy in order to function, highly digitally-powered operations come with substantial energy needs in the 

form of electricity used for computing power, oftentimes outsourced to datacentres which provide the 

processing of data and computing power (IEA, 2024[27]; OECD, 2022[8]). As a result, the energy use of 

capital may increase during the digital transition as increasingly energy-intensive ICT capital is added to 

the capital stock. In Infographic 2.1, this is represented by channel (1). Without any adjustment to the 

inputs to production, this increase in energy use is potentially immense, with the energy use of a search 

request using current generative AI models alone constituting a multiple of a simple web search (De Vries, 

2023[7]).8 However, how large the increases in demand for AI-powered computation will be remains 

uncertain. Similarly, projections about the computational energy costs are riddled with just as large of an 

uncertainty due to the importance of the underlying computation architecture, differences between the 

different life-cycle phases (such as training and inference), and large differences between AI models 

(Hwang, 2018[28]; De Vries, 2023[7]). In this vein, the adoption of operational best practices for the 

responsible use of AI along various dimensions (model, machine, mechanisation and location) can 

potentially reduce energy consumption and, depending on the type of energy source, carbon emissions by 

multiple orders of magnitude (Patterson et al., 2022[29]). Alongside the emergence of green datacentres 

(OECD, 2022[8]), this paints a more optimistic picture of the evolution of AI’s carbon footprint. Indeed, it 

seems to be the case that the AI compute hardware has been seeing efficiency gains, with data centres 

remaining at a steady share of 1% of global electricity demand despite a 25-fold growth of workloads and 

data traffic since 2010 (OECD, 2022[8]; IEA, 2023[30]).9 
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At the same time, digital technologies and, most recently, AI and ML solutions can also make digital and 

non-digital machines more energy efficient, potentially lowering the energy intensity of the overall capital 

stock. For example, smart energy and grid management systems can ensure the efficient use of energy 

inputs in production (Yao et al., 2022[31]; Yin et al., 2018[32]) and AI applied to communication networks can 

reduce energy consumption through optimised network management (OECD, 2022[33]; OECD, 2025[6]). 

Similarly, there are potential energy efficiency improvements associated with the use of industrial robots 

and the Internet of Things (Liu et al., 2022[34]; Tomazzoli, Scannapieco and Cristani, 2020[35]). In this vein, 

a recent cross-country study by Wang, Lee and Li (2022[36]) finds that the application of industrial robots 

has contributed to improving the energy efficiency of the capital stock in the manufacturing sector. Thus, 

AI also has a potential for sizeable energy savings. For instance, a recent experimental study identifies the 

energy savings potential of AI to be 35% in buildings; 25% for heating, ventilation and air conditioning 

equipment; 50% in artificial lighting systems; up to 70% in information transfer and communication; and 

20% power demand reduction in the factory (Lee, Chen and Chao, 2022[37]). An expanding body of 

literature analyses the potential of ML in climate and energy efficiency for uses such as predictive 

maintenance, remote sensing, and forecasting. These uses will likely grow as the digital transformation 

further unfolds (Rolnick et al., 2019[38]; Kaack et al., 2022[39]). 

Therefore, while digital technologies inherently increase energy demand due to their computational needs, 

they also offer significant opportunities for energy savings through optimisation and efficiency 

improvements, and these effects may be particularly pronounced in the case of AI. Both opposing effects 

are subject to a high degree of uncertainty and will ultimately depend on the path the technology will take. 

In addition, both AI’s own energy needs and applications for energy saving will respond to prices and the 

policy environment in energy markets.  

Until recent years, concerns of an exploding energy use in highly digital sectors have not materialised. In 

fact, Figure 2.1 shows that across OECD Member countries, the most digital intensive sectors (including 

both ICT manufacturing and services, but also transport equipment, financial and various other services) 

have been experiencing larger reductions in energy use than less digitally exposed sectors up until 2019.10 

While this dynamic may change with a more widespread adoption of computationally intensive AI 

technologies, this suggests that energy saving effects of the digital transformation may have dominated its 

energy needs in the observed period. 
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Figure 2.1. The energy intensity of the capital stock has declined faster in highly digital sectors 

Energy intensity of net capital stock in manufacturing sectors, OECD average 

 

Note: Energy intensity computed as energy end use per net capital stock (chain-linked volume, reference year 2015) for select sectors. Sectors 

in sample (ISIC Rev. 4 2-digit classification): 10-12, 13-15, 16-18, 19, 20-21, 23, 24, 29-30, 31-32. Sectors are classified as digital intensive 

following the taxonomy by Calvino et al. (2018[40]). Average over countries weighted by GDP by expenditure approach, US $, volume, constant 

PPPs, reference year 2015. Index year 2006. Countries in sample: Austria, Belgium, Canada, Czechia, Denmark, Finland, France, Japan, 

Netherlands, New Zealand, Norway, Portugal, Slovak Republic, United Kingdom, United States. 

Source: IEA Energy End-uses and Efficiency Indicators (IEA, 2024[41]), OECD STAN database for Structural Analysis. 

Capital intensity 

The energy use of adopting advanced digital solutions is also determined through a second mechanism: 

as AI and other digital technologies boost productivity in both machines and humans, their widespread 

adoption potentially affects the relative use of capital and labour in the production of goods and services. 

This is relevant since, as laid out above, operating capital is inherently energy-consuming, which implies 

that the energy need of production will be impacted if labour and machine operations are substituted for 

each other. For example, if work that has previously been manually executed by a human worker is now 

more efficiently carried out by an autonomous machine powered by digital technologies, a larger energy 

input will be required, other things being equal. 

However, the impact of the digital transformation on the share of capital — and thereby also labour — in 

production is not obvious, as digital technologies, including those related to AI, may have productivity-

enhancing applications in both capital and labour. The impact of these aspects of the digital transformation 

on energy use will depend on how they will impact the share of labour in production. This, in turn, will 

depend on whether technical change is more capital or labour augmenting and on the degree of 

substitutability between labour and capital; that is, to what extent labour and capital need to be employed 

together or whether they can replace each other. Many digital technologies such as the Internet of Things 

and robotics complement the use of machinery by making it more productive and efficient. If this leads to 

more machines being employed compared to workers in production, more energy will be needed as an 

input. Evidence shows that in the case of R&D in science and engineering, AI-driven idea production is 

more capital-intensive than traditional R&D (Besiroglu, Emery-Xu and Thompson, 2022[42]). 

On the other hand, certain digital technologies, particularly generative AI, have the potential to impact 

capital intensity by considerably raising worker productivity and making more efficient use of human 
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resources. Although there are still ongoing debates around the aggregate implications of AI, some studies 

predict significant labour productivity and output increases from large language models (LLM) and 

generative AI (Baily, Brynjolfsson and Korinek, 2023[43]; Goldman Sachs, 2023[44]).11 One study finds that 

the use of ChatGPT, a generative AI chatbot, significantly increased productivity in professional writing 

tasks (Noy and Zhang, 2023[45]). It has been estimated that 15% of all worker tasks in the economy could 

be significantly impacted by LLM (Eloundou et al., 2023[46]). With continuous improvements to the 

underlying models and ever-new applications, this share may increase in the future.12 Note that, depending 

on the skill intensity of the workforce, the impact of digital technologies on labour productivity may differ 

across sectors. While previous generations of digital technologies appeared to overall favour the 

productivity of high-skilled workers,13 an emerging literature now suggests that AI may improve the 

productivity of low-skilled workers more than that of high-skilled ones (Noy and Zhang, 2023[45]; Choi, 

Monahan and Schwarcz, 2023[47]; Brynjolfsson, Li and Raymond, 2023[48]). With the digital transformation 

affecting both capital and labour, the extent to which it will impact capital intensity in production also hinges 

on the degree of automation of human tasks and thus relates to the labour share in income. There is mixed 

theoretical and empirical evidence regarding the effect of automation on the labour share. Automation (as 

embodied in total factor productivity growth) has benefitted employment, but at the same time lowered the 

labour share in the United States over the last four decades (Autor and Salomons, 2018[49]). Conversely, 

it has been argued that automation in its traditional form has not had a large effect on the labour share in 

France (Aghion et al., 2021[50]). More recent economic frameworks about automation consider the role of 

the creation of new tasks (Acemoglu and Restrepo, 2018[51]). Evidence suggests that the adoption of 

robotics has raised labour productivity, but negatively affected the labour share and employment 

(Acemoglu and Restrepo, 2020[52]). The latest wave of digital technologies, and generative AI specifically, 

may be different from previous waves of automation: AI replaces not only routine tasks, but also tasks that 

are traditionally high-skilled. While as a result of this transformation, the possible outcome of a fully labour-

driven economy in the long run is also explored by Acemoglu and Restrepo (2018[51]), most economic 

models point either towards a constant labour share or even the risk of AI replacing labour altogether 

(Trammell and Korinek, 2023[53]; Erdil and Besiroglu, 2023[54]).14 

Empirically, the labour share has been considered rather stable for a long time (known as one of the “Kaldor 

facts”), but some argue it has recently begun to decrease in many advanced economies, often credited to 

the diffusion of information and computer technologies (Karabarbounis and Neiman, 2014[55]; Cho, 

Manaresi and Reinhard, 2024[56]). Early evidence suggests that digital technologies such as cloud and big 

data may have lowered the share of labour in the manufacturing sector in France through increased labour 

productivity (Cette, Nevoux and Py, 2022[57]). On the flipside, DeStefano, Kneller and Timmis (2020[58]) 

found ICT to be capital-saving in the United Kingdom. Additionally, evidence from the People’s Republic 

of China (hereafter, ‘China’) indicates that the digitalisation of firms has increased the labour share (Li 

et al., 2023[59]). 

It can be seen in Figure 2.2 that, across several OECD Member countries, capital deepening (defined as 

the increase in the capital-labour ratio) has been more pronounced in ICT capital compared to the overall 

capital stock despite ICT capital constituting only a small yet growing part of the overall capital stock.15 

This suggests an increasing demand for ICT capital, explained among other factors by the falling prices in 

ICT capital relative to labour.16 As ICT capital plays an increasingly important role in the economy relative 

to labour, the digital transformation may contribute to increasing the intensity of the energy-using capital 

stock. As such, the channel counteracts any simultaneous decreases in the energy intensity of the capital 

stock and thus contributes to a rising energy demand. For the net-zero transition, it is therefore crucial to 

which extent such energy demand is covered by clean or dirty energy.  
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Figure 2.2. Capital deepening in ICT capital has outpaced capital deepening in other forms of 
capital 

Capital intensity in the manufacturing sector over time, average over selected OECD Member countries 

 

Note: Capital intensity computed as the chain-linked volume measure of the capital stock (reference year 2015) over the number of full-time 

equivalent jobs. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, reference year 2015. Index 

year 2006. Countries in the sample: Austria, Czechia, France, Italy, Netherlands, Norway, United States. 

Source: OECD STAN database for Structural Analysis. 

Type of energy use 

With the GPT increasing machine productivity under the digital transformation, there may be differences 

regarding the types of capital benefitting the most. In the context of the net-zero transition, this is most 

relevant if machines using cleaner technologies, that is, technologies making use of low-polluting energy 

sources, are affected differently from machines using dirty technologies. 

On the one hand, advanced digital technologies such as AI and ML are proving useful for the exploration 

of extraction fields for the oil and gas industry, allowing them to lower the cost of providing dirty energy 

(Hanga and Kovalchuk, 2019[60]), with similar applications in mining (Maroufkhani et al., 2022[61]). Further, 

both the onshore and offshore oil and gas industries are set to benefit significantly from advancements in 

robotics technologies (Shukla and Karki, 2016[62]; Shukla and Karki, 2016[63]). Such applications of digital 

technologies encourage the use of dirty energy and of machines that make use of dirty energy. Additionally, 

when adopting digital technologies improves efficiency in energy use, this may not only lead to energy 

savings: as dirty energy becomes less costly to use, demand may increase as a result, a phenomenon 

known as the rebound effect (OECD, 2024[64]). Such an effect was already known to be present for early 

digital technologies (Berkhout and Hertin, 2004[65]). Energy and carbon rebound effects have been further 

documented empirically recently (Peng, Zhang and Liu, 2023[66]; Peng and Qin, 2024[67]; Zhu and Lan, 

2023[68]). Moreover, the energy demand from data centres not only increases overall energy demand, but 

it also requires stable energy supply (Bhattacharya et al., 2013[69]). Until now, fossil energy sources are 

better able to satisfy such inflexible electricity supply. This aspect of the digital transformation could 

therefore be argued to encourage dirty energy. 

On the other hand, given a long history of continuous improvement and innovation in technologies 

considered dirty, such as fossil fuel-based power plants for electricity provision or the internal combustion 
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engine in passenger vehicle transportation, machines using cleaner energy could be argued to have a 

larger potential for improvement. It has been shown that adopting AI and digital tools can support efficiency 

in network and power flow management in electric grids, benefitting in particular renewable energy such 

as wind and solar due to their innate supply fluctuations (IEA, 2023[70]). In this vein, a recent study 

confirmed the increasing importance of the integration of AI into the energy system for the performance of 

the clean energy sector (Zhang et al., 2024[71]). 

Similarly, challenges related to energy storage are crucial for the clean energy transition (Kittner, Lill and 

Kammen, 2017[72]). Here, the predictive maintenance applications of AI are a useful tool to address these 

issues and may be also applied to other connected sectors of the economy, such as cars. In the automotive 

sector, AI applications are likely to benefit electric vehicles (EV) considerably more than conventionally 

powered vehicles (Ahmed et al., 2021[73]; Rigas, Ramchurn and Bassiliades, 2015[74]; Paret, Finegan and 

Narumanchi, 2023[75]). The reason for this is that charging efficiency and battery performance have been 

one of the most persistent barriers to EV adoption, aspects which can potentially profit substantially from 

AI applications. Additionally, another study found that the use of industrial robots had a beneficial impact 

on the ecological footprint of production, especially in more advanced economies (Chen, Cheng and Lee, 

2022[76]). Therefore, as advanced digital solutions are adopted throughout the economy, this could 

disproportionately boost efficiency and productivity in clean energy, a short- to medium-term effect that 

has the potential to alter the relative balance of clean and dirty technologies. 

Figure 2.3. Highly digital sectors use relatively cleaner energy 

Share of clean energy and electricity use in manufacturing sectors over time, OECD average 

 

Note: Energy use here is considered clean when based on one of the following sources: Electricity, Renewable municipal waste, Ambient heat 

(heat pumps), Biodiesels, Biogases, Industrial waste (non-renewable), Heat, Primary solid biofuels, Geothermal, Liquid biofuels, Solar thermal. 

Sectors aggregated by energy use in 2015. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, 

reference year 2015. Countries in sample: Australia, Austria, Belgium, Bulgaria, Canada, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, 

France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, Norway, Poland, Portugal, Romania, 

Slovak Republic, Spain, Sweden, Switzerland, Türkiye, United Kingdom, United States. 

Source: IEA Energy End-uses and Efficiency Indicators (IEA, 2024[41]), World Input-Output Database Environmental Accounts (Corsatea et al., 

2019[77]), OECD STAN database for Structural Analysis. 
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In this context, recent survey data suggest that the adoption of advanced digital technologies is positively 

correlated with green investments in firms in the both the European Union and the United States (European 

Investment Bank, 2023[78]). Indeed, Figure 2.3 shows that in the manufacturing sector, highly digital firms 

make use of significantly cleaner inputs compared to less digital firms. Despite recent improvements in 

less digital sectors,17 this shows that the digitalisation of sectors is positively correlated with cleaner energy 

use.18 The figure also highlights the significant role of electricity among clean energy sources, where it 

accounts for the largest share. This pattern is particularly pronounced in highly digital sectors, which rely 

more heavily on electricity as an energy source. Consequently, digitalisation is likely to further increase 

the use of electricity due to its complementarities with ICT capital and computer-based technologies. While 

electricity has the potential to drive the transition to green energy, the impact of the digital GPT on the type 

of energy use will partly be contingent on the shares of renewables in electricity generation and thus the 

greening of the electricity sector. Due to the importance of the electricity mix for clean energy provision, 

policy can therefore play an important role in shaping the type of energy use. If adopting the GPT indeed 

makes the economy’s capital stock greener, the digital transformation may contribute to reducing the 

economy’s carbon footprint in the short run while at the same time providing the potential for the greening 

of innovation, and thereby longer-run growth in the clean sector, as is explored in the next channel (OECD, 

2022[8]). 

Direction of innovation 

While the digital transformation may help with the adoption of machines using green energy, digital 

technologies can also assist researchers themselves, enabling useful applications in R&D and fostering 

innovation (Hinings, Gegenhuber and Greenwood, 2018[79]; Ciarli et al., 2021[80]; Appio et al., 2021[81]). For 

example, digital transformation and digital connectivity have been shown to positively impact innovation 

(Wu and Li, 2024[82]; Cheng and Miao, 2025[83]). AI in particular, and most recently generative AI, have 

been attributed a transformative potential as they might allow for the autonomous discovery of ideas and 

for machines to be self-improving. The potential growth possibilities from this property on innovation are 

suggested to be significant in some of the theoretical literature (OECD, 2023[84]; Trammell and Korinek, 

2023[53]). Some analyses of the topic even consider AI’s capacity to be the invention of a method of 

inventing (IMI)19 and serve as a research tool by “automating discovery”, with profound implications for 

knowledge accumulation in the long run (Jovanovic and Rousseau, 2005[15]; Besiroglu, Emery-Xu and 

Thompson, 2022[42]). 

The target of achieving net-zero requires significant advances in low-carbon technologies.20 The “Net-Zero 

by 2050” IEA report (IEA, 2021[85]) makes it clear that the carbon neutrality objectives cannot be reached 

simply by deploying currently existing technologies at scale. While most of the global reductions in CO2 

emissions through 2030 in the net-zero scenario come from technologies readily available today, almost 

half of the reductions in 2050 will have to come from technologies that are currently at the demonstration 

or prototype phase.  

Particularly relevant in this context is the concept of directed technical change: innovation follows economic 

incentives, which in turn follow from path dependencies in technologies, innovation potential, and policy 

measures. With transformative digital technologies such as AI impacting R&D and potentially the method 

of inventions itself, a crucial consideration for the net-zero transition will be how this may change the 

profitability of research in clean energy technologies compared to the profitability of research in their dirty 

counterparts, potentially altering the direction of technical change and the course of the net-zero transition. 

The boost to productivity in R&D may especially benefit research in technologies related to clean energy, 

where the potential for improvement is highest, as illustrated by the recent rapid cost declines in renewable 

energy sources (Glenk and Reichelstein, 2022[86]). Recent empirical evidence indicates that R&D in clean 

technologies has a higher capacity to absorb knowledge generated in the digital area than R&D in dirty 
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technologies (Andres, Dugoua and Dumas, 2022[87]). This disparity could potentially be attributed to 

catching-up dynamics: the benefits of digital technologies on knowledge accumulation may be more 

pronounced in clean energy technologies because they have historically trailed behind dirty energy 

technologies. An example of this is carbon capture, utilisation and storage (CCUS), a relatively young 

technology, for which AI has been shown to be both an accelerating tool and an integral part of a research 

framework for the development of crucial nanomaterials (Chen et al., 2023[88]). Beyond the energy sector, 

AI has also been evidenced to boost advances in synthetic biology that can enable bio-based solutions in 

various sectors such as agriculture and environmental management. For example, the recent Nobel Prize 

in Chemistry was awarded to David Baker, Demis Hassabis and John Jumper for their groundbreaking 

work in computational protein design and the development of AlphaFold, an AI model that predicts protein 

structures, with potentially massive implications for developing a bioeconomy and decarbonising the 

chemical industry (Royal Swedish Academy of Sciences, 2024[89]; OECD, 2023[84]; OECD, 2023[90]). 

As depicted in Figure 2.4, clean technologies benefit from digital knowledge spillovers much more than 

high-carbon technologies. Measured by the number of patents citing digital technologies, both the absolute 

number of low-carbon patents citing digital patents and the relative share of digital citations in low-carbon 

patents exceed their high-carbon counterparts. This trend has been growing over time and supports the 

idea that clean technology research could benefit more from improvements driven by the digital 

transformation than high-carbon technologies. In other words, the digital transformation may help the net-

zero transition by encouraging a shift towards clean research. A few recent empirical studies have shown 

a positive impact of digital technologies on green innovation in firms (Cicerone et al., 2023[91]; Timmermans 

et al., 2023[92]; Liu, Liu and Ren, 2023[93]; Wang, Sun and Li, 2023[94]). Additionally, patented inventions in 

twin transition technologies (technologies that are both green and digital) have been growing faster than 

digital or environmental technologies alone (Aklilu, Dussaux and Verrier, 2025[95]). 
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Figure 2.4. Low-carbon technologies build on digital knowledge much more than dirty technologies 

Low-carbon and high-carbon patents citing vs not citing digital technologies, by year 

 

Note: Data refer to patent applications filed under the Patent Cooperation Treaty (PCT) by earliest filing date. Green technologies are identified 

using the taxonomy developed by Haščič and Migotto (2015[96]). Patents in high-carbon technologies include grey patents and are derived from 

the taxonomy developed by the IEA and EPO in 2021 (IEA, 2021[97]). Digital technologies rely on the taxonomy developed in Inaba and 

Squicciarini (2017[98]). 

Source: OECD, STI Micro-data Lab: Intellectual Property Database, May 2024. 

Scale 

In the context of the net-zero targets, what matters is ultimately not only relative measures of emissions 

per unit of economic output, but also absolute amounts of greenhouse gas emissions. This dimension is 

especially relevant in the case where the digital transformation fundamentally alters the economy’s long 

run growth dynamics. Growth in production implies a higher use of inputs, and therefore also a higher use 

of energy. Likewise, if the growth effect of the digital transformation is negative — a possible outcome in 

some economic models21 — so will be the scale effect. With the widespread adoption of AI, many models 

predict increases in long run economic growth, with some even predicting explosive growth dynamics 

(Trammell and Korinek, 2023[53]; Erdil and Besiroglu, 2023[54]). With the net-zero transition largely 

incomplete and much of energy production still relying on polluting fossil fuels, such growth effects would 

be environmentally unsustainable due to the increasing demand for energy (some of which will be dirty). 

This overall growth effect could be further amplified or mitigated by the cross-sector heterogeneity in 

changes in the composition of demand. If sectors that grow more relative to others are particularly energy-

intensive, this would further increase energy consumption. 
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Figure 2.5. Growth in digital intensive sectors has exceeded growth in other sectors 

Growth in value added in manufacturing sectors, OECD average 

 

Note: Deflated values. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, reference year 2015. 

Index year 2006. Countries in the sample: Austria, Belgium, Canada, Colombia, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, 

Hungary, Iceland, Ireland, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, 

Slovak Republic, Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States. 

Source: OECD STAN database for Structural Analysis. 

As depicted in Figure 2.5, the trend in value added growth of highly digital intensive sectors has outpaced 

growth in less digitalised sectors since 2010.22 This is in line with mounting evidence that the ICT sector 

has significantly outperformed growth in the broader economy over the past decade (OECD, 2024[99]). 

Indeed, recent evidence shows that growth in these highly digital intensive sectors has been a main driver 

of energy demand, with scale effects from digitalisation exceeding any reductions related to energy 

efficiency and sectoral composition (Hambye-Verbrugghen et al., 2024[100]). Moreover, this divergence in 

trends could further pick up momentum as new digital applications continue to emerge and the potential of 

AI keeps growing. It is known from the literature on past GPTs that many productivity and growth effects 

tend not to materialise until later in the adoption cycle, when sufficient complementary assets and 

technologies have been accumulated and organisations have successfully adapted to new methods 

(Brynjolfsson, Rock and Syverson, 2021[23]; Bresnahan, 2024[19]). Such effects may therefore still 

materialise, particularly in sectors with a current lower digital intensity. Conversely, the observed higher 

growth in digital sectors could also be driven by a mere correlation between the sectors’ capacity to absorb 

digital technologies and their growth potential. It remains to be seen whether the digital transition will 

transform growth further as more sectors adopt AI and other digital technologies. 

Overall effect 

Understanding the interplay of the different aspects detailed above is crucial in determining how the digital 

transformation, including its most recent stage related to the diffusion of AI and related advanced digital 
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technologies, will affect the net-zero transition and its pace. The literature extensively explores the role of 

innovation and path dependencies for the direction of technical change. The impact of the digital 

transformation on the direction of technical change in the long run will depend on the relative magnitudes 

of effects on clean and dirty machines and the state of their technologies. In the short run, potential 

increases in energy use, either from the direct use of energy or from increasing use of capital, may also 

have environmental effects and pose additional challenges to the net-zero transition. 

Ultimately, which effects dominate is an empirical question. This depends on the magnitudes of the various 

effects, the boost to productivity in both production and innovation, and the degree of substitutability 

between labour and capital/energy and between clean and dirty technologies. Furthermore, the overall 

effect may be heterogeneous across countries, e.g. due to differences in sectoral composition or 

regulation.  

This understanding is vital for shaping policies and strategies for a successful net-zero transition. This 

conceptual framework has provided some preliminary illustrative insights about the potential direction of 

the various channels, which are summarised in Table 2.1. It is important to keep in mind that these insights 

are based on recent aggregate trends, which do not allow to establish causal relationships, and may 

change further as the digital transformation and net-zero transition evolve. So far, despite concerns about 

the energy needs of computing, the capital stock in highly digital sectors has been decreasing its energy 

intensity faster than other sectors, pointing towards a possible beneficial outcome – at least in relative 

terms – for the net-zero transition. In a similar fashion, both capital using clean energy and R&D in clean 

technologies are positively influenced by digital technologies, indicating a potential for the digital transition 

to benefit clean energy. Conversely, the capital stock most directly related to digital technologies, ICT 

capital, is growing at a much higher rate than traditional capital. As the increasing capital stock requires 

energy, this could pose a challenge for the net-zero transition. Finally, aggregate sectoral growth trends 

suggest a potential growth effect related to digital intensity. As the digital transformation further unfolds, 

this could possibly imply a scale effect on the net-zero transition. 
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Table 2.1. Summary of the channels discussed and potential outcomes 

Summarising the channels by their potential outcome for the net-zero transition based on initial aggregate insights 

Channel Potential effect on the net-zero 
transition’s pace based on recent 

trends 
Energy use of capital Positive 

Capital intensity Negative 

Type of energy use Positive 

Direction of innovation Positive 

Scale Negative 

Note: A positive effect on the net-zero transition refers to an accelerated decrease in emissions, while a negative effect refers to a slowing down 

of the net-zero transition. 

Source: authors’ elaboration. 
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Understanding the extent to which the digital transformation can accelerate or derail the net-zero transition 

is particularly relevant from a policy perspective, at a time when governments seek to both foster a 

sustainable digital transformation and to decarbonise the economy. However, given the complexity and 

multifaceted nature of the interactions between the digital transformation and the net-zero transition, it may 

be challenging for policy makers to design appropriate policy responses. 

This paper presents an analytical framework conceptualising key economic mechanisms through which 

the digital transformation can affect the net-zero transition. The framework focuses on the quantity and 

type of energy consumed, which are key elements relevant for the net-zero transition. It considers the 

digital transformation as linked to the emergence and diffusion of a new general-purpose technology 

(GPT), which affects different sectors of the economy, boosts innovation and increases productivity for 

different inputs in production. The conceptual framework helps to outline key mechanisms that can be 

related to relevant policy levers. 

Five key channels through which the digital transformation can impact the net-zero transition are outlined: 

i) the energy use of capital, i.e. the extent to which machines become more or less energy-using; ii) the 

capital intensity, i.e. the extent to which the relative balance between labour and capital may change; iii) 

the type of energy use, i.e. the extent to which the digital transformation may improve efficiency relatively 

more for clean than for dirty machines; iv) the direction of innovation, i.e. the extent to which the GPT can 

disproportionately boost innovation in the clean or dirty sector; v) the scale, i.e. the extent to which 

aggregate emissions may increase due to higher output resulting from digital-related productivity 

improvements. 

Initial evidence based on aggregate trends, aiming at illustrating the channels proposed, has been 

reported, along with some tentative implications in terms of the possible direction of outcomes. However, 

the extent to which the digital transformation can be leveraged to reach net-zero targets remains an 

empirical question and a question of how societies choose to use digital tools. 

The framework this paper proposes holds significant implications for policymaking. Each of the economic 

mechanisms can be influenced by distinct policy levers. Policies that are designed to steer the digital 

transformation and those intended for climate action are likely to interact through these channels in a 

parallel manner. It is also crucial for policy to consider the temporal differences among these channels and 

the heterogeneity of their effects across sectors. This understanding can pave the way for evidence-based 

policymaking, enabling policymakers to concentrate on diverse aspects of the complex relationship 

between the digital transformation and the net-zero transition.  

While comprehensive into several respects, the current framework – due to its conceptual nature – does 

not fully explore some dimensions of heterogeneity (e.g. across firms or sectors). Sectoral heterogeneity 

is explored more in detail in complementary OECD work. Notably, Calvino, Dechezleprêtre and Losma 

(forthcoming[101]) aim at assessing the links between the digital transformation and the green transition at 

the sectoral level and measuring the extent to which sectors are embracing the digital and the green 

transitions. Building upon previous work on the digital intensity of sectors (Calvino et al., 2018[40]) and on 

the framework presented in this paper, the analysis focuses on key indicators of output, capital formation, 

labour, and innovation.  

3 Concluding remarks and next steps 



28  HOW CAN THE DIGITAL TRANSFORMATION AFFECT THE NET-ZERO TRANSITION 

 

 OECD SCIENCE TECHNOLOGY AND INDUSTRY WORKING PAPERS © OECD 2025 

 

Endnotes 

 
1 An AI system is a machine-based system that, for explicit or implicit objectives, infers, from the input it 

receives, how to generate outputs such as predictions, content, recommendations, or decisions that can 

influence physical or virtual environments. Different AI systems vary in their levels of autonomy and 

adaptiveness after deployment (OECD, 2019[116]). 

2 The digital transformation has been defined by the OECD as the economic and societal effects of 

digitisation and digitalisation, where (1) digitisation is the conversion of analogue data and processes into 

a machine-readable format and (2) digitalisation is the use of digital technologies and data as well as 

interconnection that results in new or changes to existing activities (OECD, 2019[117]). This paper more 

casually refers to the “digital transformation” not only as the effects of the use of digital technologies (e.g. 

on productivity) but also as digitalisation itself, i.e. the widespread adoption of digital technologies across 

the economy. 

3 Based on the taxonomy of digital intensive sectors by Calvino et al. (2018[40]). 

4 Not to be confused with generative pre-trained transformers in the context of generative AI. In this paper, 

we denote GPT to mean general-purpose technology. 

5 Even though energy consumption is not the only relevant element of the green transition, its quantity and 

type are key indicators in tackling climate targets. However, the digital transformation may have 

implications for other outcomes beyond energy consumption, such as, for instance, waste production 

(including e-waste), material requirements and associated pollution from mining, and emissions of other 

pollutants, e.g. PFAS, which are left outside the scope of the current framework for simplicity. Future work 

could broaden the framework presented in this paper by taking these additional elements into account. 

6 The role of labour may differ across sectors depending on the skill composition of the workforce. In this 

framework, we abstract from cross-sector heterogeneity in skill intensity, although this would be a relevant 

element to consider more explicitly in further analysis. See also the additional discussion in the capital 

intensity subsection. 

7 https://actu.epfl.ch/news/machine-learning-accelerates-discovery-of-solar-ce/ 

8 The estimates brought together by de Vries (2023[7]) indicate an electricity of use of 2.9 Wh per query for 

ChatGPT and 6.9-8.9 Wh for AI-powered Google Search request as compared to a self-reported electricity 

use of 0.3 Wh per conventional Google Search. 

 

https://actu.epfl.ch/news/machine-learning-accelerates-discovery-of-solar-ce/
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9 See also OECD (2023[112]) for further OECD work on compute capacity for artificial intelligence. 

10 This trend is even more apparent when distinguishing low and medium digital intensity sectors, see 

Figure A B.1 in the appendix. 

11 On the contrary, Acemoglu (2024[110]) argues that as future effects will depend on hard-to-learn tasks, 

productivity gains from AI adoption may in fact not be very large. 

12 For example, recent advances make use of LLM for modelling complex simulations (Park et al., 2023[103]; 

Gao et al., 2023[104]; Wu et al., 2023[105]). 

13 See the stream of literature discussing the skill-biased (and routine-biased) technological change 

hypotheses [e.g. Autor et al. (2003[114]) or Autor et al. (2015[115]); see also Taniguchi and Yamada (2022[113]) 

who show that ICT equipment appears more complementary to skilled rather than unskilled labour across 

OECD Member countries].  

14 The extent to which the digital transformation affects differently high-skilled and low-skilled labour might 

also impact globalisation and the international organisation of production, with in turn possible implications 

for the green transition, which are however left outside of the scope of the current discussion. 

15 Note that this also holds when including non-manufacturing sectors, see Figure A B.2 in the appendix. 

This is in line with the literature: see, e.g. Colecchia and Schreyer (2002[106]) and O’Mahony and Vecchi 

(2005[107]). 

16 In fact, a decrease in the relative price of ICT capital could also correspond to an increase in its volumes 

as a share of overall capital. Further extensions to the current analysis may further explore the role of ICT 

and non-ICT capital. Complementary ongoing work is also focusing on sectoral patterns of ICT capital 

formation in the context of developing a taxonomy of sectors according to the extent to which they are 

embracing the digital and green transitions. 

17 See Figure A B.3 in the appendix. 

18 This also holds when distinguishing low and medium digital intensive sectors, see Figure A B.4 in the 

appendix. 

19 Cockburn et al. (2019[17]) propose the idea that deep learning can represent a novel general-purpose 

invention of a method of invention; see also Bianchini et al. (2022[111]) for further discussion. 

20 Most net-zero pathways underlying climate ambitions assume the use of technologies which are not yet 

ready for deployment (IEA, 2021[108]). 

21 Mostly in the context of AI, either due to “catastrophic” effects or because of the lack of innovation 

incentives (Aghion, Jones and Jones, 2019[109]; Acemoglu and Restrepo, 2018[51]; Trammell and Korinek, 

2023[53]). 

22 Note that the reported figure hides a considerable degree of within-sectoral heterogeneity, with some 

firms increasing value added and gaining market shares likely at the expenses of others, as well as some 

cross-sectoral heterogeneity. In fact, as shown in Figure A B.5 in the appendix splitting low and medium 

digital sectors further, low digital intensity sectors experienced higher growth than medium digital intensive 
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sectors throughout the observation period, potentially due to exceptionally high growth in low digital 

intensive industries for circumstances unrelated to the digital transformation. A similar pattern is observed 

for the broader economy, see Figure A B.6. 
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Annex A. Formal framework 

Consider an economy where the final good at time 𝑡 is produced using labour as well as clean and dirty 

energy inputs with each a complementary capital stock. For exposition, assume a nested constant elasticity 

of substitution (CES) function for the final good 𝑌𝑡: 

𝑌𝑡 = ((𝛼𝐿𝐿𝑡)
𝜀−1
𝜀 + 𝑌𝐸𝑡

𝜀−1
𝜀 )

𝜀
𝜀−1

 Equation 1 

Where 𝜀 is the elasticity of substitution between the labour input 𝐿𝑡 and a combined energy-capital good 

𝑌𝐸𝑡. This energy good is in turn produced using a range of machines 𝑥𝑗𝑖𝑡 with individual productivities 𝐴𝑗𝑖𝑡 

that together make use of energy 𝐸𝑗𝑡. Following the exposition in Acemoglu et al. (2012[102]), the energy 

good further combines input from two energy sectors 𝑗 ∈ (𝑐, 𝑑): a clean and a dirty sector that each make 

use of complementary machine equipment. 

𝑌𝐸𝑡 = ((𝛼𝑐𝐸𝑐𝑡
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Equation 2 

Where 𝛾 ∈ (0,1) is the output elasticity of energy, 𝜎 is the elasticity of substitution between the clean and 

dirty inputs. A number of scientists 𝑠𝑗𝑡 ∈ 𝑆 = 1 is allocated to each sector to research improvements to the 

machines. Every scientist is randomly allocated to a machine. The probability of a successful innovation in 

each of the sectors 𝑗 ∈ (𝑐, 𝑑) in each period is given by 𝛽𝑗. Defining aggregate technology levels as 𝐴𝑗𝑡 ≡

∫ 𝐴𝑗𝑖𝑑𝑖
1

0
, this implies the following law of motion in each sector: 

𝐴𝑗𝑡+1 = (1 + 𝛽𝑗𝑠𝑗𝑡)𝐴𝑗𝑡 

Equation 3 

At time 𝑡 = 𝑡𝐺𝑃𝑇, a new GPT arrives. Due to its general nature, its productivity increases will affect the 

various inputs of production as well as the creation of innovation itself. This implies a discontinuous 

increase in 𝛼𝐿,𝛼𝑐,𝛼𝑑,𝛽𝑐,𝛽𝑑 and 𝛾, which will lead to different effects: 

1. 𝛼𝐿: the new GPT may augment labour. Workers become more productive by using the GPT in 

their daily lives. 

2. 𝛼𝑐: the new GPT makes clean energy more productive. One can think of the “smart” applications 

of AI in grid management for e.g. wind power. 

3. 𝛼𝑑: at the same time, the new GPT makes dirty energy more productive as well. AI and 

accompanying digital technologies can e.g. improve the management of oil exploration or enhance 

the efficiency of production processes that make use of fossil fuels. Together with an increase in 

𝛼𝑐 the productivity increase contributes to augmenting the energy-capital factor 𝑌𝐸  vis-à-vis labour 

in the final output.  
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4. 𝛽𝑐: new research methods implied by the GPT potentially imply more effective research in clean 

technologies. 

5. 𝛽𝑑: in a similar fashion, research in traditionally dirty technologies may be improved as well. 

6. 𝛾: new digital technologies such as AI tend to come with large energy use due to data centres and 

energy used for computing power. As a result, with the adoption of the new GPT, the energy share 

within the Cobb-Douglas specification of the capital good may be affected. 

Define each energy sector’s mass of machines as 𝑋𝑗𝑡 ≡ ∫ 𝑥𝑗𝑖𝑡𝑑𝑖
1

0
, where 𝑋𝑡 = 𝑋𝑐𝑡 + 𝑋𝑑𝑡 represents the 

aggregate capital stock. Similarly define aggregate energy use as 𝐸𝑡 = 𝐸𝑐𝑡 + 𝐸𝑑𝑡. “Relevant for the green 

transition” can be considered anything affecting the (relative) quantity of energy use, in particular dirty 

energy 𝐸𝑑𝑡 (which is polluting). How the different channels influence this variable depends on the relative 

magnitudes of the different variables as well as the substitution elasticities 𝜀 and 𝜎. 

1. Energy use of capital: Δ
𝐸𝑡

𝑋𝑡
 

2. Capital intensity: Δ
𝑋𝑡

𝑋𝑡+𝐿𝑡
 

3. Type of energy use: Δ
𝐸𝑐𝑡

𝐸𝑑𝑡
 

4. Direction of innovation: Δ
𝐴𝑐𝑡̇

𝐴𝑑𝑡̇
 

5. Scale: Δ𝐸𝑡 

 

Additionally, for 𝑗 ∈ (𝐿, 𝑐, 𝑑) it is the case that: 

𝛼𝑗  = {
1,   𝑡 < 𝑡𝐺𝑃𝑇   (before GPT)

≥ 1,   𝑡 ≥ 𝑡𝐺𝑃𝑇 (with new GPT)
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Annex B. Supplementary graphs 

Figure A B.1. Energy intensity, distinguishing medium and low digital intensive sectors 

 

Energy intensity computed as energy end use per net capital stock (chain-linked volume, reference year 2015) for select sectors. Sectors in 

sample (ISIC Rev. 4 2-digit classification): 10-12, 13-15, 16-18, 19, 20-21, 23, 24, 29-30, 31-32. Sectors are classified as digital intensive 

following the taxonomy by Calvino et al. (2018[40]). Average over countries weighted by GDP by expenditure approach, US $, volume, constant 

PPPs, reference year 2015. Index year 2006. Countries in sample: Austria, Belgium, Canada, Czechia, Denmark, Finland, France, Japan, 

Netherlands, New Zealand, Norway, Portugal, Slovak Republic, United Kingdom, United States. 

Source: IEA Energy End-uses and Efficiency Indicators (IEA, 2024[41]), OECD STAN database for Structural Analysis. 
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Figure A B.2. Capital deepening of ICT capital and total capital in the wider economy 

Capital intensity across manufacturing and non-manufacturing sectors over time, average over selected OECD 

Member countries 

 

Note: Capital intensity computed as the chain-linked volume measure of the capital stock (reference year 2015) over the number of full-time 

equivalent jobs. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, reference year 2015. Index 

year 2006. Countries in the sample: Austria, Czechia, France, Italy, Netherlands, Norway, United States. 

Source: OECD STAN database for Structural Analysis. 
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Figure A B.3. Trends in clean energy use 

Growth in the share of clean energy use in manufacturing sectors over time, OECD average 

 

Note: Energy use here is considered clean when based on one of the following sources: Electricity, Renewable municipal waste, Ambient heat 

(heat pumps), Biodiesels, Biogases, Industrial waste (non-renewable), Heat, Primary solid biofuels, Geothermal, Liquid biofuels, Solar thermal. 

Sectors aggregated by energy use in 2015. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, 

reference year 2015. Index year 2006. Countries in sample: Australia, Austria, Belgium, Bulgaria, Canada, Croatia, Cyprus, Czechia, Denmark, 

Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, Norway, Poland, 

Portugal, Romania, Slovak Republic, Spain, Sweden, Switzerland, Türkiye, United Kingdom, United States. 

Source: IEA Energy End-uses and Efficiency Indicators (IEA, 2024[41]), World Input-Output Database Environmental Accounts (Corsatea et al., 

2019[77]), OECD STAN database for Structural Analysis. 
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Figure A B.4. Clean energy shares, distinguishing medium and low digital intensive sectors 

Share of clean energy use in manufacturing sectors over time, OECD average 

 

Note: Energy use here is considered clean when based on one of the following sources: Electricity, Renewable municipal waste, Ambient heat 

(heat pumps), Biodiesels, Biogases, Industrial waste (non-renewable), Heat, Primary solid biofuels, Geothermal, Liquid biofuels, Solar thermal. 

Sectors aggregated by energy use in 2015. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, 

reference year 2015. Countries in sample: Australia, Austria, Belgium, Bulgaria, Canada, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, 

France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, Norway, Poland, Portugal, Romania, 

Slovak Republic, Spain, Sweden, Switzerland, Türkiye, United Kingdom, United States. 

Source: : IEA Energy End-uses and Efficiency Indicators (IEA, 2024[41]), World Input-Output Database Environmental Accounts (Corsatea et al., 

2019[77]), OECD STAN database for Structural Analysis 
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Figure A B.5. Growth trends when distinguishing low and medium intensive sectors 

Growth in value added in manufacturing sectors, OECD average 

 

Note: Deflated values. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, reference year 2015. 

Index year 2006. Countries in sample: Austria, Belgium, Canada, Colombia, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, 

Hungary, Iceland, Ireland, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, 

Slovak Republic, Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States. 

Source: OECD STAN database for Structural Analysis. 
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Figure A B.6. Growth in sectors by digital intensity in the wider economy 

Growth in value added across manufacturing and non-manufacturing sectors, OECD average 

 

Note: Deflated values. Average over countries weighted by GDP by expenditure approach, US $, volume, constant PPPs, reference year 2015. 

Index year 2006. Countries in the sample: Austria, Belgium, Canada, Colombia, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, 

Hungary, Iceland, Ireland, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, 

Slovak Republic, Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States. 

Source: OECD STAN database for Structural Analysis. 
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